
SpNeRF: Memory Efficient Sparse Volumetric
Neural Rendering Accelerator for Edge Devices

Yipu Zhang1, Jiawei Liang1, Jian Peng1, Jiang Xu2, Wei Zhang1,∗
1Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology

2Microelectronics Thrust, The Hong Kong University of Science and Technology (GZ)
{yzhangqg, jliangbr, jpengai}@connect.ust.hk, jiang.xu@hkust-gz.edu.cn, wei.zhang@ust.hk

Abstract—Neural rendering has gained prominence for its
high-quality output, which is crucial for AR/VR applications.
However, its large voxel grid data size and irregular access
patterns challenge real-time processing on edge devices. While
previous works have focused on improving data locality, they have
not adequately addressed the issue of large voxel grid sizes, which
necessitate frequent off-chip memory access and substantial on-
chip memory.

This paper introduces SpNeRF, a software-hardware co-design
solution tailored for sparse volumetric neural rendering. We first
identify memory-bound rendering inefficiencies and analyze the
inherent sparsity in the voxel grid data of neural rendering. To
enhance efficiency, we propose novel preprocessing and online
decoding steps, reducing the memory size for voxel grid. The
preprocessing step employs hash mapping to support irregular
data access while maintaining a minimal memory size. The
online decoding step enables efficient on-chip sparse voxel grid
processing, incorporating bitmap masking to mitigate PSNR loss
caused by hash collisions. To further optimize performance,
we design a dedicated hardware architecture supporting our
sparse voxel grid processing technique. Experimental results
demonstrate that SpNeRF achieves an average 21.07× reduction
in memory size while maintaining comparable PSNR levels.
When benchmarked against Jetson XNX, Jetson ONX, RT-
NeRF.Edge and NeuRex.Edge, our design achieves speedups of
95.1×, 63.5×, 1.5× and 10.3×, and improves energy efficiency by
625.6×, 529.1×, 4×, and 4.4×, respectively.

Index Terms—Neural Rendering, Software-Hardware Co-
Design, ASIC

I. INTRODUCTION

Neural Radiance Field (NeRF) [1] represents a novel and
promising approach for 3D scene rendering, particularly attrac-
tive for Augmented and Virtual Reality (AR/VR) applications
due to its high rendering quality and relatively high rendering
speed on high-end GPUs. While state-of-the-art (SOTA) NeRF
algorithms [2] achieve real-time performance on high-end
GPUs, they still struggle to meet the required processing
speed on edge computing platforms, such as Jetson Xavier
NX (XNX) [3] and Jetson Orin NX (ONX) [4]. The irregular
memory access pattern introduced by multi-resolution hash
encoding in [2] has been identified as a major efficiency
bottleneck in both rendering and training.

Several hardware-software co-design methods [5, 6, 7, 8]
have been proposed to address rendering and training chal-
lenges in NeRF. Among these, Instant-3D [5] and Instant-
NeRF [7] are ASIC accelerators focusing on improving data

* Corresponding author.

locality during NeRF training. Two latest ASIC neural render-
ing accelerators, NeuRex [6] and RT-NeRF [8], exemplify dif-
ferent approaches to tackling rendering efficiency. NeuRex en-
hances data locality through restricted hashing, dividing large
hash tables into subtables, but fails to address the large data
size issue. RT-NeRF leverages sparsity in TensoRF [9] weight
matrices using hybrid encoding. However, its performance is
constrained by additional matrix-vector multiplications and
limited exploration of voxel grid sparsity.

These approaches leave the large memory size problem
unresolved, leading to frequent off-chip memory access and
large on-chip memory requirements, significantly imped-
ing existing works’ overall performance. Recent algorithm
research has explored model compression techniques, such as
VQRF [10], which aims to minimize memory size by identify-
ing redundancies in voxel grid data and pruning less important
points. While this approach shows promise in reducing model
size, it introduces new challenges when deployed on edge
computing platforms: First, the original VQRF consumes
considerable memory during the rendering process. This is
because VQRF adopts a method of restoring the full voxel
grid from compressed data before processing, which leads to
frequent off-chip memory access and increased latency, posing
challenges in both power consumption and performance. To
reduce the memory size, we propose a hash mapping based
preprocessing, reducing the memory size significantly. Sec-
ond, the irregularity introduced by ray sampling in VQRF
complicates the process of locating voxel grid positions and
fetching non-zero data from compressed encoded data. Ex-
isting encoding methods for Sparse Matrix Multiplication
(SpMM) are not suitable for the irregular data access patterns
in VQRF. To overcome this challenge, we integrate an online
decoding step into our processing flow. Third, current edge
computing platforms lack effective support for our proposed
preprocessing and online decoding steps. To mitigate this
issue, we design a dedicated hardware architecture optimized
for these operations, ensuring peak performance.

To summarize, this work makes the following contributions:
• We propose SpNeRF, a software-hardware co-design

framework leveraging sparsity in neural rendering to
overcome the memory-bound bottleneck faced by pre-
vious works.

• We introduce a preprocessing step utilizing hash mapping
to enhance memory mapping efficiency for sparse voxel

Fig. 1: Orginal VQRF flow and our SpNeRF flow

grids, minimizing the memory size for the voxel grid
and simplifying non-zero data location in compressed
structures during irregular memory access.

• We develop an online decoding step incorporating hash
table lookup, non-zero value lookup, and bitmap masking,
mitigating accuracy loss caused by hash collisions.

• We design a dedicated hardware architecture integrating
a Sparse Grid Processing Unit (SGPU) and MLP Unit
to efficiently support our SpNeRF algorithm, boosting
sparse volumetric neural rendering efficiency.

II. BACKGROUND AND MOTIVATION

A. Vanilla NeRF and VQRF
Vanilla NeRF [1] has revolutionized novel view synthesis by

integrating computer graphics techniques with deep learning.
As a pioneering work, NeRF introduced the use of deep neural
networks to represent and render 3D scenes from a sparse set
of input views. However, the original NeRF implementation
relies on computationally expensive multi-layer perceptrons
(MLPs) with a large number of parameters. Consequently,
the rendering process can be time-consuming, often requiring
hours or even days to generate a single novel view. Therefore,
the volumetric method is proposed to boost training and
rendering efficiency [11]. It estimated the color features and
density of sampling points by interpolating the data stored in
the voxel grid.

VQRF [10], as shown in Fig. 1, identifies the redundancy
in voxel grid data and proposes voxel pruning and vector
quantization to minimize the memory size. Also, VQRF has
a relatively smaller MLP (only 3 layers with channel sizes
of 128, 128, 3). However, it cannot fully take advantage of
the sparsity brought by the voxel pruning since it requires
restoring the full voxel grid using the pruned voxel grid points.
Therefore, it leads to low efficiency when rendering on edge
computing platforms, such as XNX and ONX.

B. Encoding Method
Various encoding methods have been proposed for SpMM

to enhance memory and computation efficiency [12]. However,
current approaches have limitations. The COO format requires
storing all coordinates, which brings an extra 630 KB of mem-
ory usage for each scene on average in our experiments. CSR

and CSC formats necessitate row-wise or column-wise data
storage, respectively. While COO offers simple implementa-
tion but high memory overhead, CSR provides efficient row-
wise access at the cost of poor column-wise performance, and
CSC excels in column-wise operations but struggles with row-
wise access. These encoding methods often result in excessive
memory consumption and numerous lookups during irregular
data access. Consequently, these factors lead to frequent off-
chip memory accesses and the large on-chip memory demand,
both of which significantly impact performance. A detailed
analysis of these performance implications will be presented
in Section II-C.

C. Profiling VQRF on GPUs

To identify VQRF bottlenecks, we profile the neural render-
ing process across various computing platforms and character-
ize sparse data in different datasets. We utilize one high-end
computing platform, NVIDIA A100 (A100), and two edge
computing platforms, ONX, and XNX, whose specifications
are summarized in Table I. Evaluating VQRF on Synthetic-
NeRF [1] datasets for each GPU, we present the runtime
breakdown in Fig. 2(a). Profiling results reveal that edge
computing platforms spend the most time accessing memory,
while the A100 allocates minimal time to this task. We also
examine voxel grid data redundancy by separating non-zero
and zero components and calculate sparsity, as illustrated in
Fig. 2(b).

TABLE I: A summary of profiling computing platforms
Spec. A100 [13] ONX [4] XNX [3]
Tech. 7 nm 8 nm 16 nm
Power 400 W 25 W 20 W

DRAM
5120-bit 40 GB

HBM2
1555 GB/s

128-bit 16 GB
LPDDR5

102.4 GB/s

128-bit 16 GB
LPDDR4
59.7 GB/s

GPU L2 cache 40 MB 4 MB 512 KB
FP32 19.5 TFLOPS 1.9 TFLOPS 885 GFLOPS
FP16 78 TFLOPS 3.8 TFLOPS 1.69 TFLOPS

Our profiling results yield two key observations: First, the
rendering process on edge devices is predominantly memory
bandwidth-bound. The proportion of time spent on memory
access in edge computing platforms is 4.79× ∼ 5.14× higher
than in high-end computing platforms, due to the smaller

(a) Time distribution (b) Voxel grid data sparsity

Fig. 2: Profiling result for runtime on GPUs and sparsity on
datasets

Fig. 3: An illustration of preprocessing and online decoding
flow

L2 cache size and relatively low DRAM bandwidth of edge
devices. Second, there is substantial redundancy in voxel grid
data. As illustrated in Fig. 2(b), non-zero points occupy only
2.01% ∼ 6.48% of total voxel grid data, indicating significant
potential for leveraging sparsity to enhance efficiency. These
findings underscore the need for an on-chip processing flow to
mitigate expensive off-chip memory access and alleviate the
memory bandwidth bottleneck.

III. ALGORITHM DESIGN

In this section, we introduce the SpNeRF algorithm design,
which enables efficient on-chip processing by fully exploiting
sparsity to address the memory-bound problem. Our method
replaces the conventional restore step with a preprocessing step
and incorporates an online decoding step, which is shown in
Fig. 1, significantly reducing memory bandwidth requirements
and enabling efficient on-chip computation.

A. Hash Mapping Based Preprocessing

The preprocessing step encompasses three stages, as shown
in the red line in Fig. 3. Initially, we identify the non-zero
points in the sparse voxel grid and extract their position coor-
dinates (x, y, z) into a vector p = [x, y, z]T . We then aggregate
all these position vectors into a set Pnz = {pi|i = 1, 2, ..., N},
where N is the total number of non-zero points. This step
preserves the spatial information and saves it for further voxel
grid partition and hash mapping.

Subsequently, we partition the identified non-zero points
into K subgrids based on their x coordinate values. This
partitioning is defined as Sk = {pi|⌊xi/w⌋ = k,pi ∈ Pnz},
where k ∈ 0, 1, ...,K − 1, w is the width of each subgrid, and
xi is the x-coordinate of pi.

Fig. 4: SpNeRF accelerator architecture

Consequently, to efficiently support the irregular data access
patterns inherent in neural rendering, we map each subgrid
Sk into a separate hash table Hk using the following function
from [2]:

h(pi) = (xiπ1 ⊕ yiπ2 ⊕ ziπ3) mod T (1)

where T is the number of entries per hash table level, π1 = 1,
π2 = 2654435761, and π3 = 805459861. Note that each hash
table entry stores the index for non-zero value lookup in online
decoding. This final mapping process enables rapid lookup
during the rendering process and eliminates the need for
storing coordinates, thus solving the memory-bound problem
and optimizing overall performance.

B. Online Sparse Voxel Grid Decoding

We incorporate an online decoding step between ray sam-
pling and interpolation to support efficient data retrieval, as
illustrated by the blue line in Fig. 3. This online decoding
process unfolds as follows: Initially, for each sample point,
we retrieve its position and calculate the corresponding hash
index using (1). Subsequently, we utilize this hash index to
fetch the lookup index for non-zero values from the hash
table. Following this, we employ the retrieved 18-bit index
to locate non-zero values in both the codebook and true voxel
grid. To streamline this process, we implement a unified 18-bit
addressing scheme for both the codebook and true voxel grid.
Finally, we implement a bitmap masking technique to mitigate
errors primarily caused by hash collisions. This approach
utilizes a bitmap that stores a single bit for each voxel grid
point, indicating whether the point is zero (0) or non-zero
(1). By representing all voxel grid points’ status in just 1 bit
each, the bitmap provides a memory-efficient method to track
non-zero values. During the decoding process, we consult this
bitmap to effectively mask all erroneous values resulting from
hash collisions, setting them to zero. Our observations indicate
that hash collisions are the dominant source of errors in this
process. Therefore, the bitmap masking step is crucial for
maintaining accuracy in our decoding procedure. The detailed
result for bitmap masking will be analyzed in Section V-B.

Fig. 5: Our proposed block-circulant storage format for input buffer

IV. HARDWARE ARCHITECTURE DESIGN

A. Overview

In this section, we present the SpNeRF architecture as
illustrated in Fig. 4, designed to support our algorithm. The
SpNeRF accelerator comprises two primary modules: the
Sparse Grid Processing Unit (SGPU) and the MLP Unit. The
SGPU is specifically tailored to execute the series of lookup
operations required during online sparse voxel grid decoding.
Complementing the SGPU, the MLP Unit is implemented as
an output-stationary systolic array, a design commonly em-
ployed in conventional DNN accelerators. Our design method
aligns with [6], extending a standard DNN accelerator with a
specialized unit (in our case, the SGPU) to efficiently support
neural rendering tasks. The overall dataflow of our system is
initiated at the position buffer. Upon retrieval of a position,
it is forwarded to the Hash Mapping Unit, which performs
a lookup operation to locate the corresponding voxel grid
data. The Trilinear Interpolation Unit subsequently processes
this voxel grid data to compute the interpolation result. The
resulting output is then concatenated with the view direction
vector and stored in the input buffer of the MLP unit. The
on-chip computing is in FP16 while the true voxel grid data
is saved in INT8 format on off-chip memory to save the
memory usage and reduce the communication overhead. To
ensure high throughput, the entire design is fully pipelined.
Furthermore, all buffers in the system are double-buffered,
enabling simultaneous data fetching and processing.

B. Sparse Grid Processing Unit

The Sparse Grid Processing Unit (SGPU) is designed to
support our proposed online sparse voxel grid decoding flow.
It comprises four key components:

Grid ID Unit (GID). The GID computes ceiling and round
results for each point position to locate the corresponding
voxel grid vertex. It also calculates the weight by FP16
multipliers and subtractors for trilinear interpolation using the
following equation introduced by [6]:

w = (1− |xp − xg|) · (1− |yp − yg|) · (1− |zp − zg|) (2)

where (xp, yp, zp) represents the sample point position and
(xg, yg, zg) denotes the voxel grid vertex position.

Bitmap Lookup Unit (BLU). The BLU stores the bit mask
for the current subgrid. All bit masks are stored sequentially
in a contiguous memory space, enabling efficient location of
bits using voxel grid vertex positions as memory addresses
and selection signals. The BLU lookup results are used to
mask incorrect non-zero values caused by hash collisions in
the Hash Mapping Unit.

Hash Mapping Unit (HMU). The HMU is the core module
of the SGPU, facilitating the hash table lookup crucial for
our online sparse voxel grid decoding. It processes the voxel
grid vertex results from the GID and computes the hash index
using Equation (1). Once the hash index is determined, the
color feature index and density are fetched from the hash
table stored in the Index and Density Buffer. Our unified 18-
bit addressing scheme differentiates color codebook and true
voxel grid buffer lookups by comparing the index value. For
a color codebook size of 4096 × 12, lookup requests with
color feature index values below 4096 are served by the color
codebook, while others are directed to the true voxel grid
buffer. The final output is filtered by the bit mask from BLU.

Trilinear Interpolation Unit (TIU). The TIU plays a
crucial role in processing and interpolating color features.
Initially, it converts the original color features from the true
voxel grid buffer, stored in INT8 format, to FP16 format by
multiplying the lookup results with the scale factor. Mean-
while, the density data and the color feature vector from the
codebook will be directly sent to later computations. Following
this conversion, the TIU multiplies each transformed color
feature with its corresponding voxel grid vertex weight, as
computed by the voxel grid ID Unit. Finally, it accumulates the
weighted color features from all eight surrounding voxel grid
vertices to produce the final interpolation result. This process
can be represented by the equation Cinterp =

∑8
i=1 wi·(s·Ci),

where Cinterp is the interpolation result, wi are the weights for
each voxel grid vertex, s is the scale factor for de-quantization,
and Ci color feature vector in corresponding voxel grid vertex.

(a) Memory size reduction (b) PSNR result

Fig. 6: Algorithm evaluation result for our proposed SpNeRF

C. MLP Unit

The MLP Unit consists of an output-stationary systolic
array, activation unit, controller unit, and data buffers. It
computes a 3-layer MLP with channel sizes of 128, 128, and
3, respectively. To enhance efficiency, we implement batch
processing with a batch size of 64. Addressing the challenge
of inconsistent vector sizes between the previous unit’s output
and the systolic array’s input dimension, we propose a block-
circulant storage format. This optimized memory pattern re-
duces both memory overhead and read time.

As illustrated in Fig. 5, the block-circulant storage format
interleaves the input 39× 1 vector across banks 0 to 9. Each
input vector is segmented into 10 blocks, with each block
containing four consecutive elements. Elements within the
same block are stored successively, while adjacent blocks are
stored in neighboring banks with a block offset of 4. The
write sequence depicted in Fig. 5 demonstrates the process
of writing the first vector into the input buffer. To ensure
divisibility by 4, we pad the last element with 0. The reading
sequence follows the vector element number in ascending
order, with each read result undergoing a block shift to
maintain the correct sequence of the first vector. As shown in
Fig. 5, the current reading vector passes through shift logic,
which repositions the first block from bank 0 to ensure that
elements of the first vector are correctly aligned with the first
row of the systolic array.

V. EVALUATION

A. Evaluation Setup

Implementation. For Algorithm Evaluation, we implement
our proposed SpNeRF algorithm based on VQRF [10] in
PyTorch [14]. For Hardware Evaluation, we implement our
accelerator in Verilog and synthesize our design using Syn-
opsys Design Compiler based on TSMC 28nm CMOS Tech-
nology to obtain the power and area metrics. The operating
clock frequency for our design is 1 GHz. On-chip SRAMs
are generated by the provided memory compiler with the
same technology. To evaluate the overall performance of
our SpNeRF architecture, we develop a cycle-level simulator
verified against our RTL design. The DRAM timing and power
characteristics are obtained using Ramulator [15] with the
configuration of LPDDR4-3200, which provides a bandwidth
of 59.7 GB/s.

(a) Hash table size = 16 k (b) Subgrid number = 64

Fig. 7: (a) PSNR vs. different subgrid number and (b) PSNR
vs. hash table size

Datasets & Baseline. To evaluate the performance of the
proposed SpNeRF, we conduct experiments on the Synthetic-
NeRF [1] dataset. For the hardware evaluation baseline, we
select the edge computing platforms and edge accelerators as
our baselines. For edge computing platforms, we compare our
design with Jetson Xavier NX 16 GB and Jetson Orin NX
16 GB (commonly used edge GPUs). For edge accelerators,
we compare our design with RT-NeRF.edge and NeuRex.edge
(both are dedicated ASIC accelerators for neural rendering).

B. Algorithm Evaluation

Subgrid Number & Hash table size. Fig. 7 illustrates
the relationship among PSNR, subgrid number, and hash table
size. The results reveal that PSNR increases rapidly initially
but slow down beyond certain values for both subgrid number
and hash table size. Based on this analysis, our design adopts
a subgrid number of 64 and a hash table size of 32 k, as larger
values yield only marginal improvements in PSNR.

Memory Size Reduction. Fig. 6(a) compares the voxel
grid data size of our proposed SpNeRF with the original
VQRF. SpNeRF achieves an average memory size reduction
of 21.07× compared to VQRF. This significant reduction in
memory footprint is primarily attributed to the online sparse
voxel grid decoding technique, which eliminates the necessity
of restoring the full voxel grid data.

PSNR Performance. Fig. 6(b) illustrates the PSNR results
for VQRF, SpNeRF before bitmap masking, and SpNeRF
after bitmap masking. Higher PSNR values indicate better
image quality. The results demonstrate that our SpNeRF, with
bitmap masking applied, maintains PSNR levels comparable
to VQRF while simultaneously achieving substantial memory

(a) Normalized speedup compared with XNX and ONX (b) Normalized energy efficiency compared with XNX and ONX

Fig. 8: Normalized speedup and energy efficiency compared with edge computing platforms

(a) Area breakdown (b) Power breakdown

Fig. 9: Area and Power of SpNeRF

reduction. This indicates that the proposed method effectively
preserves image quality despite the significant decrease in
memory usage.

C. Hardware Evaluation

Performance. Fig. 8 shows the normalized speedup and
energy efficiency compared with edge devices and Table II
gives the comparison between our design and previous works.
The results indicate that SpNeRF achieves great advances in
both speedup and energy efficiency. In comparison, SpNeRF
achieves 52.4× ∼ 157.1× speedup compared with XNX and
34.9× ∼ 112.2× speedup compared with ONX. This improve-
ment is attributed to hash mapping adopted in preprocessing
and online decoding, eliminating the need for frequent off-chip
memory access.

Area. Fig. 9(a) illustrates the area breakdown of our Sp-
NeRF accelerator, while Table II presents the total area and
area efficiency of our design. In the area breakdown, the MLP
buffer accounts for 58 KB SRAM (comprising input buffer,
output buffer, and weight buffer), and the SGPU contains 571
KB SRAM. Notably, in our design, on-chip SRAM occupies
only a small fraction of the overall area. This contrasts with
other designs, where on-chip SRAM typically dominates the
chip area. The results demonstrate that the memory reduction
achieved through online sparse voxel grid decoding effectively
minimizes on-chip SRAM size, leading to superior area effi-
ciency of 2.67× to 3.04× compared to previous works.

Power. Fig. 9(b) depicts the power breakdown of our
SpNeRF accelerator and Table II provides the total power and
power efficiency of our design. The power breakdown reveals
that the systolic array accounts for the dominant portion of
overall power consumption in our design, contrasting with
previous studies where on-chip SRAM was the primary power
consumer. Our approach achieves a 4× to 4.37× improvement

TABLE II: Summary of comparisons between related work
and our SpNeRF

Accelerator RT-NeRF [8] NeuRex [6] SpNeRF (Ours)
SRAM (MB) 3.5 0.86 0.61
Area (mm2) 18.85 1.31 7.7
Tech. (nm) 28 28 28
Power (W) 8 1.31 3

DRAM LPDDR4-1600
17 GB/s

LPDDR4-3200
59.7 GB/s

LPDDR4-3200
59.7 GB/s

FPS 45 6.57* 67.56
Energy Eff.
(FPS/W) 5.63 5.15 22.52

Area Eff.
(FPS/mm2) 2.38 2.09 6.36

* NeuRex only provides normalized speedup. Here we infer from Jetson
XNX rendering speed.

over previous works. When comparing with XNX and ONX,
as shown in Fig.8(b), SpNeRF achieves 346.4× ∼ 1030.9×
and 288.7× ∼ 937.2× energy efficiency improvement, re-
spectively. This advantage comes from two key factors: First,
our design minimizes on-chip SRAM size, which has been
observed to be a dominant contributor to power consumption
in previous works. Second, our design fully leverages voxel
grid sparsity, significantly reducing off-chip memory access,
another major source of power consumption.

VI. CONCLUSION

This paper presents SpNeRF, a novel software-hardware co-
design approach for facilitating memory efficiency in sparse
volumetric neural rendering. We propose hash mapping-based
preprocessing and online sparse voxel grid decoding tech-
niques to fully leverage the sparsity in voxel grid data. To
support our algorithmic innovations, we introduce a dedicated
hardware architecture designed for efficient neural rendering.
Experimental results demonstrate that our design significantly
outperforms edge computing platforms and previous works
in terms of speedup, energy efficiency, and area efficiency.
These improvements make SpNeRF a promising solution
for advancing the field of neural rendering, particularly in
resource-constrained environments.

ACKNOWLEDGMENT

This work was partially supported by AI Chip Center for
Emerging Smart Systems (ACCESS), Hong Kong SAR and
Collaborative Research Fund (UGC CRF) C5032-23G.

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes
as neural radiance fields for view synthesis,” in European
Conference on Computer Vision, Springer, 2020, pp. 405–421.

[2] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural
graphics primitives with a multiresolution hash encoding,”
ACM transactions on graphics (TOG), vol. 41, no. 4, pp. 1–15,
2022.

[3] M. Ditty, A. Karandikar, and D. Reed, “Nvidia’s xavier soc,”
in Hot chips: a symposium on high performance chips, 2018.

[4] M. Ditty, “Nvidia orin system-on-chip,” in 2022 IEEE Hot
Chips 34 Symposium (HCS), IEEE Computer Society, 2022,
pp. 1–17.

[5] S. Li et al., “Instant-3d: Instant neural radiance field training
towards on-device ar/vr 3d reconstruction,” in Proceedings
of the 50th Annual International Symposium on Computer
Architecture, 2023, pp. 1–13.

[6] J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim,
“Neurex: A case for neural rendering acceleration,” in Pro-
ceedings of the 50th Annual International Symposium on
Computer Architecture, 2023, pp. 1–13.

[7] Y. K. Zhao, S. Wu, J. Zhang, S. Li, C. Li, and Y. C. Lin,
“Instant-nerf: Instant on-device neural radiance field training
via algorithm-accelerator co-designed near-memory process-
ing,” in 2023 60th ACM/IEEE Design Automation Conference
(DAC), IEEE, 2023, pp. 1–6.

[8] C. Li, S. Li, Y. Zhao, W. Zhu, and Y. Lin, “Rt-nerf: Real-time
on-device neural radiance fields towards immersive ar/vr ren-
dering,” in Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design, 2022, pp. 1–9.

[9] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, “Tensorf: Ten-
sorial radiance fields,” in European conference on computer
vision, Springer, 2022, pp. 333–350.

[10] L. Li, Z. Shen, Z. Wang, L. Shen, and L. Bo, “Compress-
ing volumetric radiance fields to 1 mb,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 4222–4231.

[11] L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt,
“Neural sparse voxel fields,” Advances in Neural Information
Processing Systems, vol. 33, pp. 15 651–15 663, 2020.

[12] S. Dave, R. Baghdadi, T. Nowatzki, S. Avancha, A. Shrivas-
tava, and B. Li, “Hardware acceleration of sparse and irregular
tensor computations of ml models: A survey and insights,”
Proceedings of the IEEE, vol. 109, no. 10, pp. 1706–1752,
2021.

[13] J. Choquette and W. Gandhi, “Nvidia a100 gpu: Performance
& innovation for gpu computing,” in 2020 IEEE Hot Chips 32
Symposium (HCS), IEEE Computer Society, 2020, pp. 1–43.

[14] A. Paszke et al., “Pytorch: An imperative style, high-
performance deep learning library,” Advances in neural in-
formation processing systems, vol. 32, 2019.

[15] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and ex-
tensible dram simulator,” IEEE Computer architecture letters,
vol. 15, no. 1, pp. 45–49, 2015.

